Jumat, 30 Juli 2010

hUKuM 1 kiRcHoFf


HUKUM I KIRCHOFF

Dalam alirannya, arus listrik juga mengalami cabang-cabang. Ketika arus listrik melalui percabangan tersebut, arus listrik terbagi pada setiap percabangan dan besarnya tergantung ada tidaknya hambatan pada cabang tersebut. Bila hambatan pada cabang tersebut besar maka akibatnya arus listrik yang melalui cabang tersebut juga mengecil dan sebaliknya bila pada cabang, hambatannya kecil maka arus listrik yang melalui cabang tersebut arus listriknya besar.

Hukum I Kirchoff berbunyi:

Jumlah kuat arus listrik yang masuk ke suatu titik simpul sama dengan jumlah kuat arus listrik yang keluar dari titik simpul tersebut.

Hukum I Kirchhoff tersebut sebenarnya tidak lain sebutannya dengan hukum kekekalan muatan listrik.

Hukum I Kirchhoff secara matematis dapat dituliskan sebagai:

5

HUKUM II KIRCHOFF

Pemakaian Hukum II Kirchhoff pada rangkaian tertutup yaitu karena ada rangkaian yang tidak dapat disederhanakan menggunakan kombinasi seri dan paralel.

Umumnya ini terjadi jika dua atau lebih ggl di dalam rangkaian yang dihubungkan dengan cara rumit sehingga penyederhanaan rangkaian seperti ini memerlukan teknik khusus untuk dapat menjelaskan atau mengoperasikan rangkaian tersebut. Jadi Hukum II Kirchhoff merupakan solusi bagi rangkaian-rangkaian tersebut yang berbunyi:

Di dalam sebuah rangkaian tertutup, jumlah aljabar gaya gerak listrik (ε) dengan penurunan tegangan (IR) sama dengan nol.

Hukum Kirchoff II dirumuskan sebagai berikut:

6

HukUm OHM


Aliran arus listrik dalam suatu rangkaian tidak berakhir pada alat listrik. tetapi melingkar kernbali ke sumber arus. Pada dasarnya alat listrik bersifat menghambat alus listrik. Hubungan antara arus listrik, tegangan, dan hambatan dapat diibaratkan seperti air yang mengalir pada suatu saluran. Orang yang pertama kali meneliti hubungan antara arus listrik, tegangan. dan hambatan adalah Georg Simon Ohm (1787-1854) seorang ahli fisika Jerman. Hubungan tersebut lebih dikenal dengan sebutan hukum Ohm.
Setiap arus yang mengalir melalui suatu penghantar selalu mengalami hambatan. Jika hambatan listrik dilambangkan dengan R. beda potensial V, dan kuat arus I, hubungan antara R, V, dan I secara matematis dapat ditulis:

Gambar:ohm.jpg

Sebuah penghantar dikatakan mempunyai nilai hambatan 1 Ω jika tegangan 1 V di antara kedua ujungnya mampu mengalirkan arus listrik sebesar 1 A melalui konduktor itu. Data-data percobaan hukum Ohm dapat ditampilkan dalam bentuk grafik seperti gambar di samping. Pada pelajaran Matematika telah diketahui bahwa kemiringan garis merupakan hasil bagi nilai-nilai pada sumbu vertikal (ordinat) oleh nilai-nilai yang bersesuaian pada sumbu horizontal (absis). Berdasarkan grafik, kemiringan garis adalah α = V/T Kemiringan ini tidak lain adalah nilai hambatan (R). Makin besar kemiringan berarti hambatan (R) makin besar. Artinya, jika ada suatu bahan dengan kemiringan grafik besar. bahan tersebut makin sulit dilewati arus listrik. Komponen yang khusus dibuat untuk menghambat arus listrik disebut resistor (pengharnbat). Sebuah resistor dapat dibuat agar mempunyai nilai hambatan tertentu. Jika dipasang pada rangkaian sederhana, resistor berfungsi untuk mengurangi kuat arus. Namun, jika dipasang pada rangkaian yang
rumit, seperti radio, televisi, dan komputer, resistor dapat berfungsi sebagai pengatur kuat arus. Dengan demikian, komponen-komponen dalam rangkaian itu dapat berfungsi dengan baik. Resistor sederhana dapat dibuat dari bahan nikrom (campuran antara nikel, besi. krom, dan karbon). Selain itu, resistor juga dapat dibuat dari bahan karbon. Nilai hambatan suatu resistor dapat diukur secara langsung dengan ohmmeter. Biasanya, ohmmeter dipasang hersama-sama dengan amperemeter dan voltmeter dalam satu perangkat yang disebut multimeter. Selain dengan ohmmeter, nilai hambatan resistor dapat diukur secara tidak langsung dengan metode amperemeter voltmeter.

FiSiKa listrik dinamis


Aliran listrik ditimbulkan oleh muatan listrik yang bergerak di dalam suatu penghantar. Arah arus listrik (I) yang timbul pada penghantar berlawanan arah dengan arah gerak elektron.

Muatan listrik dalam jumlah tertentu yang menembus suatu penampang dari suatu penghantar dalam satuan waktu tertentu disebut sebagai kuat arus listrik. Jadi kuat arus listrik adalah jumlah muatan listrik yang mengalir dalam kawat penghantar tiap satuan waktu. Jika dalam waktu t mengalir muatan listrik sebesar Q, maka kuat arus listrik I adalah:

1

2

para ahli telah melakukan perjanjian bahwa arah arus listrik mengalir dari kutub positif ke kutub negatif. Jadi arah arus listrik berlawanan dengan arah aliran elektron.

BEDA POTENSIAL ATAU TEGANGAN LISTRIK (V)

Terjadinya arus listrik dari kutub positif ke kutub negatif dan aliran elektron dari kutub negatif ke kutub positif, disebabkan oleh adanya beda potensial antara kutub positif dengan kutub negatif, dimana kutub positif mempunyai potensial yang lebih tinggi dibandingkan kutub negatif.

Beda potensial antara kutub positif dan kutub negatif dalam keadaan terbuka disebut gaya gerak listrik dan dalam keadaan tertutup disebut tegangan jepit.

HUBUNGAN ANTARA KUAT ARUS LISTRIK (I) DAN TEGANGAN LISTRIK (V)

Hubungan antara V dan I pertama kali ditemukan oleh seorang guru Fisika berasal dari Jerman yang bernama George Simon Ohm. Dan lebih dikenal sebagai hukum Ohm yang berbunyi:

Besar kuat arus listrik dalam suatu penghantar berbanding langsung dengan beda potensial (V) antara ujung-ujung penghantar asalkan suhu penghantar tetap.

Hasil bagi antara beda potensial (V) dengan kuat arus (I) dinamakan hambatan listrik atau resistansi (R) dengan satuan ohm.

3

HUBUNGAN ANTARA HAMBATAN KAWAT DENGAN JENIS KAWAT DAN UKURAN KAWAT

Hambatan atau resistansi berguna untuk mengatur besarnya kuat arus listrik yang mengalir melalui suatu rangkaian listrik. Dalam radio dan televisi, resistansi berguna untuk menjaga kuat arus dan tegangan pada nilai tertentu dengan tujuan agar komponen-komponen listrik lainnya dapat berfungsi dengan baik.

Untuk berbagai jenis kawat, panjang kawat dan penampang berbeda terdapat hubungan sebagai berikut:

4

HUKUM I KIRCHOFF

Dalam alirannya, arus listrik juga mengalami cabang-cabang. Ketika arus listrik melalui percabangan tersebut, arus listrik terbagi pada setiap percabangan dan besarnya tergantung ada tidaknya hambatan pada cabang tersebut. Bila hambatan pada cabang tersebut besar maka akibatnya arus listrik yang melalui cabang tersebut juga mengecil dan sebaliknya bila pada cabang, hambatannya kecil maka arus listrik yang melalui cabang tersebut arus listriknya besar.

Hukum I Kirchoff berbunyi:

Jumlah kuat arus listrik yang masuk ke suatu titik simpul sama dengan jumlah kuat arus listrik yang keluar dari titik simpul tersebut.

Hukum I Kirchhoff tersebut sebenarnya tidak lain sebutannya dengan hukum kekekalan muatan listrik.

Hukum I Kirchhoff secara matematis dapat dituliskan sebagai:

5

HUKUM II KIRCHOFF

Pemakaian Hukum II Kirchhoff pada rangkaian tertutup yaitu karena ada rangkaian yang tidak dapat disederhanakan menggunakan kombinasi seri dan paralel.

Umumnya ini terjadi jika dua atau lebih ggl di dalam rangkaian yang dihubungkan dengan cara rumit sehingga penyederhanaan rangkaian seperti ini memerlukan teknik khusus untuk dapat menjelaskan atau mengoperasikan rangkaian tersebut. Jadi Hukum II Kirchhoff merupakan solusi bagi rangkaian-rangkaian tersebut yang berbunyi:

Di dalam sebuah rangkaian tertutup, jumlah aljabar gaya gerak listrik (ε) dengan penurunan tegangan (IR) sama dengan nol.

Hukum Kirchoff II dirumuskan sebagai berikut:

6

ENERGI LISTRIK

7

Karena q = I . t, dimana I adalah kuat arus listrik dan t waktu, maka besar usaha

yang dilakukan adalah:

W = V . I . t

Karena V = I . R, maka besar usaha W yang sama dengan energi listrik adalah

8

DAYA LISTRIK

Besar Daya listrik (P) pada suatu alat listrik adalah merupakan besar energi listrik (W) yang muncul tiap satuan waktu (t), kita tuliskan.

9

10